AD-A007 253

HARRY DIAMOND LABS ADELPHI MD
A VERSATILE FIBER-OPTIC SIGNAL LINK FOR EMP TESTING AND GENERAL--ETC(U)

UNCLASSIFIED

HDL-TM-80-5

ML

END DATE FLUED 9-80 OTIC

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) READ INSTRUCTIONS
BEFORE COMPLETING FORM REPORT DOCUMENTATION PAGE 2. GOVT ACCESSION NO HDL-TM-8Ø-5 TITLE (and Subtitle OF REPORT & PERIOD COVERED July 1977-July 1978 A Versatile Fiber-Optic Signal Link for EMP Testing Technical Memorandum and General Laboratory Applications 6. PERFORMING ORG. REPORT NUMBER CONTRACT OR GRANT NUMBER(a) AUTHOR(e) James Blackburn Robert Martin G ORGANIZATION WAME AND ADDRESS Harry Diamond Laboratories Program Ele: 6.27.10.H 2800 Powder Mill Road Adelphi, MD 20783 . CONTROLLING OFFICE NAME AND ADDRES 12. REPORT DATE June 1980 Defense Nuclear Agency 13. NUMBER OF PAGES Washington, DC 20305 15. SECURITY CLASS. (of this report) **UNCLASSIFIED** me moi 15a. DECLASSIFICATION/DOWNGRADING Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) 18. SUPPLEMENTARY NOTES DRCMS Code: 36AA.6000.62710; This work was sponsored by the Defense Nuclear Agency Field Command under Subtask G37KAXYX910, Work Unit 05, Apache Test Phase support. 9. KEY WORDS (Continue on reverse side if necessary and identify by block number, Fiber optics Analog LED link Wideband fiber-optic link **LED EMP** testing to an reverse stds if necessary and identify by block no A fiber-optic analog signal link is described that was designed specifically to be used for EMP measurements. The link accepts electrical inputs in the range from millivolts to volts and converts them to optical signals which are then transmitted by optical fibers to a remote receiver. The unit is unaffected by electric fields up to hundreds of kilovolts/meter, and a bandwidth of about 130 MHz is provided; the unit has a dynamic range of approximately 30 dB.

DD 17084 1473

EDITION OF ! NOV 45 IS OFSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (

143050

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

20. ABSTRACT (Cont'd)

This dynamic range is extended an additional 45 dB by an internal attenuator which is commanded (by an optical fiber link) to insert a fixed attenuation in the range of 0 to 45 dB between the input connecter and transmitter. A self-calibrator is also commanded by the same link. An unusual circuit feature is the use of a single electro-optic device to perform both light-emitting diode and detector functions.

	7.
_	locession For
	NTIS GUNGI DDC TAS In National () Vastivité Liber
	ly
	Distribution
	Amdinabi Samarena
I	ist. A.A.1 to 7/or special

2

CONTENTS

	1	age	
1.	INTRODUCTION		
2.	TRANSMITTER—BLOCK DIAGRAM AND DESCRIPTION	5	
3.	RECEIVER AND CONTROL UNIT—BLOCK DIAGRAM AND DESCRIPTION	7	
4.	OPTICAL FIBER CONSIDERATIONS	8	
5.	RECEIVER CIRCUITRY	9	
6.	SIGNAL TRANSMITTER CIRCUITS	11	
7.	CONTROL UNIT LOGIC	11	
8.	REMOTE-UNIT CONTROL LOGIC 8.1 Input/Output Circuit 8.2 Turn On/Off 8.3 Loading of Attenuation Command 8.4 Interrogation/Calibration.	15 15 15	
9.	SYSTEM PERFORMANCE	16	
10.	FUTURE PLANS AND SUGGESTIONS	17	
	LITERATURE CITED	19	
	DISTRIBUTION	21	
FIGURES			
ı.	Fiber-optic signal link	6	
2.	Block diagram of LED transmitter and control system	6	
3.	Internal view of transmitter and battery pack	7	
4.	Block diagram of optical receiver and control system	8	
5.	Optical receiver circuit	10	
6.	Signal transmitter circuit schematic	12	
7.	Control unit circuit schematic	13	
8.	Remote-unit control logic schematic	14	
9.	Phase and amplitude plots	16	

1. INTRODUCTION

The optical signal link described here is based on an earlier, less adaptable system. 1 It was built to answer the need for a versatile EMP-resistant conduit that could convey the signals from sensors to a remote location without noise pickup. In addition to having no noise pickup itself, the fiberoptic link also insures that no noise is conveyed into the system under test (as might occur with conducting lines). The optical cable may be less than 1 mm in diameter where necessary and consequently can pass through an opening so small that it provides no significant compromise in shielding, even at the highest EMP frequencies. The system also typically provides a wider bandwidth than is possible with tractable conducting cables. The fiber-optic cable is wideband, mechanically durable, flexible, and resistant to moisture. The transmitter and fiber optics were tested in electric fields as high as several hundred kilovolts/meter, and no significant noise was picked up even though signals as low as 1 mV were being transmitted. A number of these systems have been in use since late 1977, often under field conditions, with no significant failures or instabilities except for some early failures caused by a defective lot of signal light-emitting diodes (LED's).

The optical tansmitter is the cylindrical structure on the right of figure 1 (p 6). It accepts the sensor signals (in the range from millivolts to volts) at its 50-ohm input and converts them to optical signals which are carried to the receiver by an optical fiber (or fiber bundle). Additional circuitry in the transmitter decodes and executes the various commands sent by the front-panel controls of the receiver/control unit. The lower half of the transmitter is a plug-in battery pack which provides more than 12 hours of continuous use. In the application for which this system was built, space was liberally available and thus no attempt was made at miniaturization. Were it necessary, the volume of the transmitter could be reduced to onethird the size of the present unit; only assembly convenience and battery running time would be compromised.

¹J. Blackburn, A 120-MHs Bandwidth Linear Signal Transmission System Using Fiber Optics, IEEE Trans. Instrum. Meas. 1M-24, 3 (September 1975). The optical receiver and control unit (left-hand cabinet of fig. 1) receives the optical signals and converts them to an electrical signal available at the receiver output, which is typically connected directly to an oscilloscope. The controls allow the user to turn the system on and off, insert an attenuation between 0 and 45 dB at the input, and turn the internal 10-mV calibrator on and off. A logical "handshake" confirms proper reception of the attenuation commands. All signals are conveyed between the receiver/control unit and transmitter/remote unit via optical fibers.

The two spools each contain 100 m of optical cable: one is used to transmit the signal from transmitter to receiver and the other to carry controlling commands in both directions between transmitter and control unit. A single cable containing two fibers, one for each function, could equally well have been used. Such a twin-fiber cable would reduce total cable weight to only about 3-kg for the 100-m distance.

2. TRANSMITTER—BLOCK DIAGRAM AND DESCRIPTION

The electronic circuitry of the transmitter/remote unit is summarized by figure 2, and an internal view of the transmitter is shown in figure 3. Proceeding from the optical output back towards the electrical input, the low-impedance LED is driven by a single transister stage which provides operating bias, modulation current, and some high-frequency pre-emphasis. This stage is driven by a linear 50-ohm amplifier which provides voltage gain. The input of this stage may be connected by remote control either to the input attenuator or to the calibration generator. The input attenuator uses four TO-5-can relays to insert or remove 3-, 6-, 12-, and 24-dB attenuation elements in response to the commands from the control unit.

The remote-control link consists of an LED which is used both as a light-emitting element when forward biased and as a photovoltaic detector when zero biased and operated into a high load impedance. In the control sequence the detector

Figure 1. Fiber-optic signal link. Control unit on left, transmitter and cable on right.

Figure 2. Block diagram of LED transmitter and control system.

Figure 3. Internal view of transmitter and battery pack.

first receives the pulse-modulated optical commands incoming on the control fiber and then (by time multiplexing) later sends out optical signals to verify proper reception of the attenuation command.

Since the attenuator is a stable and accurate device using precision resistors, and since its proper setting is verified by the control link, it is necessary only to verify the system gain between the input of the wideband amplifier and the output of the receiver in order to know the total system gain from signal input to receiver output. This is accomplished by the calibration generator which, upon command, applies a +10, 0, -10 mV three-state calibration pulse sequence to the input of the 30-dB amplifier.

Such a calibration is essential since the attenuation of the optical fiber, and to a lesser extent the gains of the LED and detector, may change by a decibel or two during a day. The attenuation of the optical fiber also may change by a few decibels when the optical connectors are disconnected and reconnected, or when the fiber cable is spooled and re-layed, etc., in moving from one test situation to another.

In principle, one could apply an automatic gain control (AGC) loop to the receiver and automatically remove most of this variation. Since one would still need a calibration generator to verify this operation, the AGC loop has been left out and calibration has been made completely straightforward.

3. RECEIVER AND CONTROL UNIT— BLOCK DIAGRAM AND DESCRIPTION

The electronic system of the optical receiver/control unit is depicted in figure 4. The commands (system on-off, attenuation, calibrator on-off) are set by the operator on the front panel switches. These commands are coded by the electronics, and the coded signal is applied to the electro-optical transducer, which emits a light pulse sequence into the control optical fiber. After an interval of some milliseconds, during which the remote unit executes the commands, the optical transducer goes into the receive mode and the verification signal from the remote unit is received, decoded, and displayed. Proper attenuation command reception is verified if an LED indicator lights under each "on" attenuator control switch.

Figure 4. Block diagram of optical receiver and control system.

The attenuation command to the remote unit is sent only once, immediately after the remote unit is commanded to turn on; after this attenuation command has been received, the remote unit locks and will not accept any further attenuation commands until after it has been turned off, and then on again. This prevents any possibility of unexpected attenuation changes due to noise pickup, loose optical control cables, etc. The calibrator, and of course power, may be turned on and off at any time.

The design of the signal receiver is very straightforward, consisting of an avalanche photodetector, (APD), detector bias supply, and wideband accoupled amplifier. The bias supply is temperature compensated to nullify detector gain changes in response to environmental temperature changes.

A signal-level meter indicates the detector de current (and, therefore, optical carrier level). A limited-range detector bias control allows the operator to make fine signal-level adjustments.

4. OPTICAL FIBER CONSIDERATIONS

Fiber optics can be supplied in a variety of physical configurations which meet almost any handling and environmental situation while providing the advantages of optical communication. A fiber with a single-layer coating of plastic is suitable for light duty use, and typically has an outside diameter of less than 1 mm. With additional layers of nonconducting plastic coverings, a fiber cable smaller than RG-58, and much lighter in weight. can withstand a tension of hundreds of Newtons and also foot and vehicle traffic. Most cables will operate over a temperature range of -30 to +60°C and are unaffected by moisture. A much wider temperature range is attainable with special coverings. Multi-fiber cables, providing a number of isolated signal channels, are not much larger than single-fiber units since the fibers themselves are insignificant in size and share the more bulky mechanical protective coatings.

Connectors can be used to join various fiber configurations so that, for instance, a very durable multi-fiber cable of the size of ordinary coaxial cable can be run from instrumentation to a remote point, with each of the fibers joined to an individual strand of submillimeter diameter fiber, and each of these tiny fibers runs into a test object through a small opening which does not compromise the electrical shielding or mechanical properties of the test object.

In addition to the obvious advantages of light weight, small size, and immunity to electric fields and noise, fiber optics also has the advantage of very great bandwidth compared to coaxial cables. A modest-performance optical fiber has a bandwidth of 20 MHz (flat within 3 dB) over a 1-km distance, with a loss of perhaps 15 dB. To this, compare the RG-58, which has a loss of about 55 dB/km at 20 MHz and a loss of over 10 dB at 1 MHz. A 1-km length of high-performance fiber may have a response flat within 3 dB from dc to over 1 GHz with a total loss of 5 dB.

At present, satisfactory connectors are available for all types of optical fibers (this was not true as recently as a year or so ago). As might be expected, the smaller the fiber diameter, the more precise the connector must be. Molded plastic connectors suffice for a wide variety of modest-performance fibers; precision metal connectors are usually required with high-performance (and consequently small-diameter) fibers. The unique connector manufactured by Deutsch Company seems at present to be the most satisfactory for the widely used 63-mm fibers.

For permanent splices between fibers, a fiberto-fiber welding technique is available which allows low-loss permanent connections without the use of connector hardware.

Optical time-domain reflectometer (TDR) equipment is also now available for use in locating fiber breaks. The optical TDR sends a short, fastrise pulse of light down the fiber and then views the fiber with a sensitive detector, indicating the time and amplitude history of the reflected light on a scope display.

The choice of fiber to be used in a given application depends on the signal frequency and transmission distance.² For the system described, the logic rate of the control link is so low that fiber dispersion is of no consequence; plastic clad silica (PCS) fiber is suitable. The large numerical aperture and core diameter of this fiber allows excellent optical coupling. The signal fiber, because of its >100 MHz bandwidth, must be chosen with attention to dispersion. For distances up to several tens of meters, PCS fiber is suitable; for distances up to 100 m or so, step-index glass is the best choice: it provides a lesser optical coupling than PCS, but has a much reduced dispersion. For long distances, dispersion considerations dominate all others and graded index fibers are required, even though they have the least numerical aperture and core diameter of the three types. The reduced optical coupling available with the graded fiber will produce the least signal-to-noise ratio in the received optical signal, but transmission over more than a kilometer is feasible.

All types of fibers can be supplied with the full range of coverings to provide the required physical properties.

5. RECEIVER CIRCUITRY

5.1 Detector and Voltage Control

The C30884 APD (see fig. 5) requires a rather closely controlled reverse bias voltage between about 270 and 340 V, depending on the individual unit. Further, if the gain of the APD is to be constant, this voltage must be increased as the detector's temperature increases. An AD580 voltage reference, a thermistor, and a CA3130 optical amplifier combine with Q20 to provide the necessary adjustment, regulation, and compensation functions.

The +400 V supply passes through R10 and is dropped to the required voltage by the current

² R. B. Allan, Fiber Optics Theory and Practice, Plenum Press, New York (1976)

Figure 5. Optical receiver circuit.

through Q20 (and the current through the APD). The voltage is fed back through R11 and compared with the AD580 reference. The result of the comparison is amplified by the CA3130 and drives the TIS 100, thus completing the loop.

The 1A11 thermistor provides temperature compensation. As the temperature rises, the thermistor decreases in resistance and more current flows from the node where R6, R7, and R8 meet to ground. This causes a voltage increase across Q20; consequently, more current flows through R11 into the node. R8 adjusts the rate of this compensation to about 2 V/C as required by the detector.

The relay RY4 is used to turn the +400 V supply off if the +15 V supply drops to a value too low to enable the AD580 and the CA3130 to operate. Without RY4, if the +15 V supply were removed, Q20 would not be driven and the detector voltage would soar to a value which could damage the detector.

The proper detector current is around 200 μ A. An excessive detector voltage will cause the APD to draw large self-avalanche currents and injure itself. Such self-avalanche is accompanied by considerable noise, readily visible if the receiver output is displayed on a wideband oscilloscope.

5.2 Amplifiers

The output of the APD is amplified by three GPD-type* amplifier modules to an output of several hundred millivolts (at maximum signal). The GPD units are hybrid circuits containing a signal transistor and the necessary matching and biasing components. Each stage has a gain of about 13 dB.

Although this type of amplifier, with its low input impedance (about 40 ohms) is not generally the optimal choice for use with a current source such as the APD, in this application the optical

^{*}GPD is a product designation of Avantek, Inc., Santa Clara, CA

signal level is high enough so that amplifier noise is not of critical importance. When analyzing noise performance of an analog AM-modulated system using an APD, one must bear in mind that a weak signal (low-modulation index) produces the situation of a small signal variation superimposed on a high background level; detector excess noise may be considerable.³

Examination of the noise output from the receiver shows that it contains a significant number of narrow (~ 1 ns) spikes, occurring at a random rate. Since these spikes are very narrow and occur at a relatively low average rate, they may not be visible on even a wideband scope if it does not have a high writing rate. These spikes can provide false triggering if one is attempting to observe a weak receiver signal output on an internally triggered scope. If the received signal is of reasonable strength, this is not likely to be a problem. One should normally choose the transmitter's front-end attenuation so as to provide a strong signal at the receiver.

6. SIGNAL TRANSMITTER CIRCUITS

The transmitter system (fig. 6) consists of three subdivisions: the front-end attenuator and its logic (described in sect. 7), the waveform generator (calibrator) (Q16 to Q19), and the transmitter itself, which consists of two GPD stages, the driver Q20, and the C30133 LED. A description of the calibrator and transmitter follows.

Transmitter. — The transmitter consists of two GPD stages having a total gain of 26 dB and the common emitter driver, Q20, which has the LED as the collector load. For transmission of submillivolt signals, an additional GPD amplifier stage may be added to provide 40 dB of gain. Since the LED has a low dynamic impedance, there is very little Miller effect degradation in the final stage. R3 sets the no-signal bias, typically 30 to 50 mA. This value must be individually adjusted to provide the maximum undistorted modulation swing for the

LED. The trimmer capacitors and resistor, R6, are adjusted to provide the best pulse shape response for the link.

Calibrator. - When RY2 is energized (by Q2 of the remote unit logic), the transmitter input is transferred from the signal to the calibrator. The waveform generator consists of two monostable amplifiers (O16, 17 and O18, 19) driven by the 10-kHz waveform from IC4F (on the logic board). IC4F triggers Q19, which triggers Q18, causing the collector of O18 to go negative for the desired period. This constitutes half of the calibrator waveform. When the collector of Q18 returns, this is coupled by the 15-pF capacitor to Q17. The collector of Q16 now goes positive for a period, producing the positive half of the waveform. R5 sets the waveform level and R4 adjusts the symmetry (for equal positive and negative excursions). Time symmetry does not have a convenient control but could be adjusted by a change in the value of the 56-pF capacitors associated with Q16, 17 and 018, 19. The waveform thus produced goes first negative, then positive, and then back to zero. Since the system inverts all signals, this appears at the receiver output as the desired (positive-first) waveform.

7. CONTROL UNIT LOGIC

When the on-off switch of the control unit (fig. 7) is energized, section 1 of U14 immediately emits a low on its Q output. This low (1) causes U13 to load the data selected by the front-panel attenuation switches and applied to the inputs A through D, (2) disables U12, section 1, by forcing the clear and B inputs low, and (3) clears U11, section 2.

As a result of the clear applied to U11, section 2. Q15 is turned on. The clear applied to U12, section 1, prevents it from triggering U12, section 2; thus, the 2Q output is low: this low state turns Q14 on. Since both Q14 and Q15 are on, the LED D8 is illuminated and this illumination is conveyed to the remote unit by a fiber-optic cable. This in turn, energizes the remote unit.

³H. Melchoir and W. F. Lynch, Signal and Noise Response of High Speed Germanium Avalanche Photodiodes, IEEE Trans. Electron Devices, ED-13, (1966), 829.

Figure 6. Signal transmitter circuit schematic.

When U14, section 1Q goes high it (1) enables U11, section 2, (2) removes the load signal from U13, and (3) allows U12, section 1, to operate. Section 1 of U12 is an oscillator driving U12, section 2; thus, a series of pulses is produced at the U12, section 2, Q output. This is a square wave of about 500 Hz. This square wave both drives LED D8 (through Q14) and counts U13 down. When U13 is counted down to zero, the borrow input goes low, thus disabling U12, section 2, and terminating the 500-Hz square wave. Meanwhile, the remote unit (fig. 8) has used detector D7, etc., to count the flashes of LED D8.

LED D9 begins in the "on" state and ends up in the "on" state, having made a brief series of "off" excursions. Its duty cycle is such that it is "on" most of the time. U11, section 2 (which is triggered by the oscillator of U11, section 1), having been enabled by U14, section 1, periodically emits a high on its Q output. The leading edge of this high causes U14, section 2, to emit a short pulse which clears counter U10. During the entire duration of the high, Q15 is turned off, thus removing the drive from D8 and allowing it to serve as a photodetector. The interruption of the light from D8 causes the remote unit to go into its interrogate cycle (as described in sect. 8). When the remote unit replies (via flashes from LED D7), detector D8 and comparator U15 detect the flashes and feed the signal through shaper U9 into counter U10. The count of U10 is displayed via the LEDs on the front panel.

The interrogate cycle can be defeated by a front panel switch which prevents U11, section 2, from becoming triggered.

Figure 7. Control unit circuit schematic.

Figure 8. Remote-unit control logic schematic.

PARTS INSIDE DOTTED LINE ON BOARDS Separate from other circuits

8. REMOTE-UNIT CONTROL LOGIC

8.1 Input/Output Circuit

The TIL-31 LED (D7 of fig. 8) acts both as a photodetector and as a photoemitter. This eliminates cable alignment difficulties which result from coupling light between a fiber-optic cable and two physically separated electro-optic components. The LED as a photodetector can easily provide several hundred millivolts of usable signal when operated into a high impedance.

When the unit is receiving commands (sent from the controller via the fiber-optic cable), the photodetector output is compared by IC1 to the reference level set by R1.

When the remote unit is sending the attenuator verification pulses back to the controller diode, D7 serves as an emitter, driven by Q3. During sendback, D7 is of course "blind," but at this time there is no requirement for receiving signals.

8.2 Turn On/Off

The input detector (D7) and the comparator (IC1) are always powered. When the controller is turned on, the light from LED D8 (fig. 7) is coupled via the control fiber-optic cable into D7. The light is sensed and the comparator output changes state. This charges the 10-µF capacitor and as the voltage rises the 2N3906 emitter follower (Q1) turns the relay (RY1) on. The relay in turn supplies power to the rest of the unit.

When the controller is turned off, the $10-\mu F$ capacitor decays through the 330-kohm resistor, thereby turning the unit off. This turn-off delay is sufficiently long to keep the unit from turning off during interrogate commands.

8.3 Loading of Attenuation Command

When RY1 initially closes at turn-on, the application of the negative supply determines the start of many of the timing signals. For example, at the preset enable of IC2 (Pin 1) the voltage across the capacitor, C1, is 0 V relative to the VDD supply

(Pin 16). This is a logical 1, which causes the zeros at the jam inputs to be loaded into the counter. Capacitor T1 now charges to the negative supply through the 1.8 Mohm resistor until the preset enable is at logical zero. The counter is now ready to receive and count pulses.

The controller, having waited an appropriate time after turn-on, now sends out a series of pulses in the form of brief interruptions in the output of D8. These interruptions of light output are too brief to open RY1 (because of the time constant in the base of Q1), but are fed into IC2 Pin 15 and counted. The pulse count is taken from the outputs of IC2, amplified by drivers Q4 through Q7, and closes appropriate relays in the attenuator.

After about 300 ms, the output of IC4B (which is controlled by time constant T1) goes high and counter IC2 is inhibited from receiving further counts. At the same time clamping diode D5 is reverse-biased.

Since the attenuation loading is complete, the remote unit is now ready to be interrogated by the controller.

8.4 Interrogation/Calibration

When the operator commands the control unit to interrogate (by flipping the front-panel switch), the current drive is removed from D8 (by the turning off of Q15) and thus D8 is enabled to act as a photodetector. The remote unit's D7 senses the absence of light, and the output of IC1 switches. This begins the charge of capacitor C2 at the input of IC4C. After approximately 30 ms, IC4C switches. (This 30-ms delay is required to allow the carriers in the controller LED, which had been on, to decay, allowing what was once an LED to now function as a photodetector). When IC4C switches, the output is differentiated and the resultant pulse applied through IC4D to IC3 Pin 1 (preset). This loads IC3 with the output of IC2 (i.e., the actual attenuator setting at this time). Loading IC3 with a nonzero count causes the carryout (Pin 7) line of IC3 to go high. This reverse-biases clamp diode D6 and enables IC4A, which now oscillates at a

frequency of 500 Hz. The output of IC4A pulses D7 (via driver Q3) and also pulses the clock input (Pin 1) of IC3. When IC3 has been clocked down to zero by the pulses the carryout (Pin 7) goes low, forward biasing diode D6 and turning the oscillator off. Meanwhile, the light flashes produced by D7 have been received by D8, counted by U10, and displayed on the front-panel LEDs of the controller. After the controller has received these pulses, it turns its LED back on. If it did not turn back on, the remote unit would turn itself off after the expiration of the time constant set by T2.

The remote unit is unable to respond to further interrogations until a time delay set by T4 has passed. This prevents the remote unit from interpreting its own light pulses as requests for interrogation and thus running continuously.

The interrogate command also causes the remote unit to send its calibrate signal. The output of IC4C is coupled to IC4E, which turns on for a period determined by time constant T4 (approximately 2s). The output of IC4E turns transistor Q2 on. This in turn closes the relay RY2 on the fiber-optic transmitter board, shifting the transmitter's signal input from external inputs to the calibrator. The repetition rate of the calibrator is determined by oscillator IC4F. The nominal frequency of the calibrator is 10 kHz, which can be trimmed by adjusting the value of the 200-kohm resistor. The time constant T4 is longer than the repetition rate of the controller interrogate; as a result, the calibration relay is continuously closed and the oscillator runs continuously for as long as the controller is in the interrogate mode.

9. SYSTEM PERFORMANCE

The amplitude and phase response of the system is shown in figure 9. These plots were obtained by feeding the test signal from the analyser into the transmitter, connecting the transmitter to the receiver with a 3-m long optical fiber, and feeding the optical receiver output into the analyser test channel. Although the amplitude data are correct, there is some doubt about the accuracy of the phase information because of the problem of providing equal propagation time delay between reference

and test channels when the test channel contains a delay as great as the 3-m optical cable. In any event, phase distortion is reasonable, since square pulses are transmitted with only modest ripple. Low-frequency square waves show a tilt due to the low-frequency 3-dB point of about 5 kHz.

The dynamic range of the system is limited at the upper end by the level at which distortion in the transmitter becomes excessive and at the lower end by the level at which the signal modulation is obscured by noise; the low end is therefore to a great extent determined by the amount of optical signal that reaches the detector. This signal level, in turn, is dependent on the optical losses between the LED and detector. Over modest distances (up to

Figure 9. Phase and amplitude plots: upper, 0.1 to 11 MHz; lower, 1 to 110 MHz. Phase, 10 deg/division; amplitude, 1 dB/division.

50 m or so), a high numerical aperture fiber with a large optical transfer coefficient can be used, and the dynamic range should be nearly 40 dB. At greater distances, the dispersion of the high numerical aperture fiber will be excessive, and the required small-core fibers will give a smaller optical transfer and, consequently, a dynamic range near 30 dB.

10. FUTURE PLANS AND SUGGESTIONS

Although the described instrument, made originally in 1977, has worked very successfully and provided much measurement data which would probably have been prohibitively difficult to obtain with more unwieldy dielectric transmission systems (and totally unobtainable with hard-wire) it is, in a sense, obsolete at this time. At present, laser diodes have been developed to the point where their linearity is at least as good as that of an LED, and their lifetimes and stability are certainly adequate for laboratory instrumentation. With threshold currents now as low as about 35 mA, and very high dynamic sensitivity, a laser can be substituted for the LED with very little circuit change, and the resulting system will offer several times the bandwidth of the LED system together with better dynamic range. Such a signal link, incorporating a single-mode laser and highly miniaturized attenuator, has now been essentially completed by the authors. This system has a bandwidth of 500 MHz, and a dynamic range of 35 to 40 dB; it will be contained in a volume of about 35 cubic inches. All the control features of the original system have been retained.

Lest one completely despair that the LED system become outmoded, it should be pointed out that the cost of LEDs is much less than that of lasers and that their lifetimes and temperature stability are superior. Also, the very narrow spectral output of single-mode lasers has produced some knotty optical fiber problems not experienced with LED emitters; interference effects within fibers and at the connector can produce model noise.⁴

A number of experimenters⁵ have used predistortion and feed-forward or feed-backward schemes to linearize LED systems, producing second and higher harmonics down 60 or more dB. At present this work has concentrated at video bandwidths, but the possibility of applying it to wideband instrumentation links is certainly attractive.

³ R. E. Epu orth, Phenomenon of Modal Noise in Fiber Systems, VOSA IEEE neeting, Washington, D.C. (9 March 1979)

⁵ I. Staruss, Linearized Transmitters for Analog Fiber Optical Systems, Paper II GG2, OSA IEEE meeting, San Diego, CA (7 February 1978)

Literature Cited

- J. Blackburn, A 120-MHz Bandwidth Linear Signal Transmission System Using Fiber Optics, IEEE Trans. Instrum. Meas., IM-24, 3 (September 1975).
- 2. W. B.Allan, Fiber Optics, Theory and Practice, Plenum Press, New York (1973).
- 3. H. Melchoir and W. T. Lynch, Signal and Noise Response of High Speed Germanium Ava-
- lanche Photodiodes, IEEE Trans. Electron Devices, ED-13, (1966), 829.
- 4. R. E. Epworth, Phenomenon of Modal Noise in Fiber Systems, VOSA/IEEE meeting, Washton, D.C. (9 March 1979).
- I. Strauss, Linearized Transmitters for Analog Fiber Optical Systems, Paper TUGG2, OSA/IEEE meeting, San Diego, CA (7 February 1978).

DISTRIBUTION

ADMINISTRATOR
DEFENSE DOCUMENTATION CENTER
ATTN DDC-TCA (12 COPIES)
CAMERON STATION, BUILDING 5
ALEXANDRIA, VA 22314

COMMANDER
US ARMY RSCH & STD GP (EUR)
ATTN LTC JAMES M. KENNEDY, JR.
CHIEF, PHYSICS & MATH BRANCH
FPO NEW YORK 09510

COMMANDER
US ARMY MATERIEL DEVELOPMENT &
READINESS COMMAND
ATTN DRXAM-TL, HQ TECH LIBRARY
ATTN DRCDE, DIR FOR DEV & ENGR
ATTN DRCDE-R, SYSTEMS EVALUATION
& TESTING
ATTN DRCCE, DIR FOR COMMUNICATIONS-ELECTRONICS
ATTN DRCBSI, DIR FOR BATTLEFIELD
SYS INTEGRATION

COMMANDER
US ARMY ARMAMENT MATERIEL
READINESS COMMAND
ATTN DRSAR-LEP-L, TECHNICAL LIBRARY
ROCK ISLAND, IL 61299

COMMANDER
US ARMY MISSILE & MUNITIONS
CENTER & SCHOOL
ATTN ATSK-CTD-F
REDSTONE ARSENAL, AL 35809

5001 EISENHOWER AVENUE

ALEXANDRIA, VA 22333

DIRECTOR
US ARMY MATERIEL SYSTEMS ANALYSIS ACTIVITY
ATTN DRXSY-MP
ATTN DRXSY-CC, COMM & ELECTRONICS
ABERDEEN PROVING GROUND, MD 21005

DIRECTOR
US ARMY BALLISTIC RESEARCH LABORATORY
ATTN DRDAR-TSB-S (STINFO)
ABERDEEN PROVING GROUND, MD 21005

TELEDYNE BROWN ENGINEERING CUMMINGS RESEARCH PARK ATTN DR. MELVIN L. PRICE, MS-44 HUNTSVILLE, AL 35807

ENGINEERING SOCIETIES LIBRARY 345 EAST 47TH STREET ATTN ACQUISITIONS DEPARTMENT NEW YORK, NY 10017

U.S. ARMY ELECTRONICS TECHNOLOGY AND DEVICES LABORATORY ATTN DELET-DD FORT MONMOUTH, NJ 07703 BROOKHAVEN NATIONAL LABORATORY ASSOCIATED UNIVERSITIES, INC. ATTN PHYSICS DEPT UPTON, LONG ISLAND, NY 11973

AMES LABORATORY (ERDA) ATTN NUCLEAR SCIENCE CATEGORY IOWA STATE UNIVERSITY AMES, IA 50011

DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS ATTN LIBRARY WASHINGTON, DC 20234

DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS
CENTER FOR RADIATION RESEARCH
WASHINGTON, DC 20234

INSTITUTE FOR TELECOM SCIENCES
NATIONAL TELECOMMUNICATIONS &
INFO ADMIN
ATTN J. HULL
BOULDER, CO 80303

DEPARTMENT OF COMMERCE
NATIONAL OCEANIC & ATMOSPHERIC
ADMINISTRATION
ATTN ENVIRONMENTAL RESEARCH LABS
ROCKVILLE, MD 20852

US ENERGY RESEARCH & DEVELOPMENT
ADMINISTRATION
ATTN ASST ADMIN FOR NUCLEAR ENERGY
ATTN DIV OF COMMUNICATIONS
& COMPUTER OPERATIONS
ATTN OFFICE OF TECHNICAL INFORMATION
WASHINGTON, DC 20545

DIRECTOR
DEFENSE ADVANCED RESEARCH
PROJECTS AGENCY
ATTN DIR, NUCLEAR MONITORING RES OFFICE
ATTN DIR, TECHNOLOGY ASSESSMENTS OFFICE
ATTN DR. SHERMAN KARP
ARCHITECT BLDG
1400 WILSON BLVD
ARLINGTON, VA 22209

DIRECTOR
DEFENSE COMMUNICATIONS AGENCY
ATTN TECH LIBRARY
WASHINGTON, DC 20305

DIRECTOR
DEFENSE COMMUNICATIONS AGENCY
COMMAND & CONTROL TECHNICAL CENTER
ATTN CHIEF FOR MIL COMMAND SYS
WASHINGTON, DC 20301

DIRECTOR
DEFENSE COMMUNICATIONS ENGINEERING CENTER
ATTN RES & DEV
ATTN TRANS SYS DEV BR
ATTN TECHNICAL LIBRARY
1860 WIEHLE AVE
RESTON, VA 22090

DIRECTOR
DEFENSE INTELLIGENCE AGENCY
ATTN DT-1, NUCLEAR & APPLIED
SCIENCES DIV
ATTN DT-4, ELECTRONICS & COMMAND
& CONTROL DIV
WASHINGTON, DC 20301

CHAIRMAN
OFFICE OF THE JOINT CHIEFS OF STAFF
ATTN J-6, COMMUNICATIONS-ELECTRONICS
WASHINGTON, DC 20301

CHIEF
LIVERMORE DIVISION, FIELD COMMAND, DNA
LAWRENCE LIVERMORE LABORATORY
P.O. BOX 808
LIVERMORE, CA 94550

NATIONAL COMMUNICATIONS SYSTEM OFFICE OF THE MANAGER ATTN NCS-TS WASHINGTON, DC 20305

DIRECTOR
NATIONAL SECURITY AGENCY
ATTN O. D. VAN GUNTEN, R-425
ATTN FRANK LUNNEY
ATTN PAUL SZAEPANCH
ATTN HARRY SOLOMON
ATTN S-65, P. BENSON
ATTN R-13, H. HOEHN, N. GROVE
FORT GEORGE G. MEADE, MD 20755

DIRECTOR
DEFENSE NUCLEAR AGENCY
ATTN RAEV, ELECTRONIC VULNERABILITY
ATTN TITL, LIBRARY
ATTN RAEE, EMP EFFECTS DIVISION
ATTN SPTD, TEST DIVISION
WASHINGTON, DC 20305

COMMANDER
FIELD COMMAND
DEFENSE NUCLEAR AGENCY
ATTN FCSD-A4, TECH REF BR
ATTN FCTMS
KIRTLAND AFB, NM 87115

UNDER SECRETARY OF DEFENSE
FOR RESEARCH & ENGINEERING
ATTN DEP DIR (TEST & EVALUATION)
ATTN ELECTRONICS & PHYSICAL SCIENCES
WASHINGTON, DC 20301

OFFICE OF THE DEPUTY CHIEF OF STAFF
FOR RESEARCH, DEVELOPMENT,
& ACQUISITION
DEPARTMENT OF THE ARMY
ATTN DAMA-ARZ-A, CHIEF SCIENTIST,
DA & DIRECTOR OF ARMY RESEARCH,
DR. M. E. LASSER
ATTN DAMA-CSS-N, NUCLEAR TEAM
ATTN DAMA-WSW, GROUND COMBAT SYS DIV
WASHINGTON, DC 20310

COMMANDER
US ARMY ARMAMENT RESEARCH AND
DEVELOPMENT COMMAND
ATTN DRCPM-CAWS, CANNON ARTILLERY
WEAPON SYS/SEMIACTIVE LASER
GUIDED PROJECTILES
ATTN DRDAR-SEM, MATERIEL DEV EVAL
ATTN DRDAR-LCN, NUCLEAR APPLICATIONS DIV
ATTN DRDAR-TS, TECHNICAL SUPPORT DI7
DOVER, NJ 07801

COMMANDER
US ARMY AVIATION RESEARCH &
DEVELOPMENT COMMAND
P.O. BOX 209
ATTN DRDAV-E, DIR FOR DEV & ENGR
ATTN DRDAV-N, ADVANCED SYS TECHNOLOGY
INTEGRATION OFFICE
ST LOUIS, MO 63166

COMMANDER
ATMOSPHERIC SCIENCES LABORATORY
ATTN DELAS-BE-C, COMBAT ENVIR BR
WHITE SANDS MISSILE RANGE, NM 88002

BALLISTIC MISSILE DEFENSE PROGRAM MANAGER OFFICE ATTN DACS-BMZ-C, DEPUTY DIR COMMONWEALTH BUILDING 1300 WILSON BLVD ARLINGTON, VA 22209

COMMANDER
BALLISTIC MISSILE DEFENSE SYSTEMS COMMAND
P.O. BOX 1500
HUNTSVILLE, AL 35807

DIRECTOR
US ARMY BALLISTIC RESEARCH LABORATORY
ATTN DRDAR-BLV, VULNERABILITY/
LETHALITY DIV
ABERDEEN PROVING GROUND, MD 21005

COMMANDER
US ARMY COMM-ELEC ENGR INSTAL AGENCY
ATTN TECH LIB
FORT HUACHUCA, AZ 85613

COMMANDER
US ARMY COMMUNICATIONS COMMAND
COMBAT DEVELOPMENT DIV
FORT HUACHUCA, AZ 85613

COMMANDER

US ARMY COMMUNICATIONS RESEARCH AND DEVELOPMENT COMMAND ATTN DRDCO-SE, SYS ENGR & INTEGRATON ATTN DRDCO-COM, COMMUNICATIONS SCIENCES ATTN DRCPM-ATC, PM, ARMY TACTICAL COMMUNICATIONS SYS ATTN DRDCO-COM-RM4, J. CHRISTIAN

ATTN DRDCO-COM-RM1, L. DWORKIN ATTN DRDCO-COM-RM1, A. MONDRICK ATTN DRDCO-COM-RM, I. KULLBACK ATTN DRDCO-COM, S. DIVITO FT. MONMOUTH, NJ 07703

US ARMY COMMUNICATIONS SYS AGENCY FT. MONMOUTH, NJ 07703

COMMANDER

US ARMY COMMUNICATIONS & ELECTRONICS MATERIEL READINESS COMMAND ATTN SELEM-ES, DIR FOR ELECTRONICS SYS MAINTENANCE

FT. MONMOUTH, NJ 07703

COMMANDER

US ARMY COMMUNICATIONS COMMAND AGENCY USA COMMO AGENCY, WS WHITE SANDS MISSILE RANGE, NM 88002

COMMANDER

US ARMY COMPUTER SYSTEMS COMMAND ATTN TECH LIB FORT BELVOIR, VA 22060

US ARMY OFFICE TEST DIR JOINT SERVICES ELECTRO-OPTICAL GUIDED WEAPONS COUNTERMEASURES TEST PROGRAM WHITE SANDS MISSILE RANGE, NM 88002

COMMANDER

ERADCOM TECHNICAL SUPPORT ACTIVITY ATTN DELSD-L, TECH LIB DR FORT MONMOUTH, NJ C7703

DIRECTOR

ELECTRONIC WARPARE LABORATORY ATTN DELEW-C, COMM INTEL/CM DIV FT MONMOUTH, NJ 07703

COMMANDER

US ARMY ELECTRONICS COMMAND OFFICE OF MISSILE ELECTRONIC WARFARE WHITE SANDS MISSILE RANGE, NM 88002

COMMANDER FORT HUACHUCA DEPT OF THE ARMY FORT HUACHUCA, AZ 85613

COMMANDER **EWL** ATTN DELEW-I INTEL MAT DEV & SPT OFFICE FT MEADE, MD 20755

COMMANDER

US ARMY MATERIALS & MECHANICS RESEARCH CENTER ATTN DRXMR-PL, TECHNICAL LIBRARY WATERTOWN, MA 02172

COMMANDER US DARCOM FIELD OFFICE P.O. BOX 5290 KIRTLAND AFB, NM 87117

DIRECTOR OF MATERIEL MANAGEMENT US ARMY COMMUNICATIONS & ELECTRONICS MATERIEL READINESS COMMAND ATTN DRSEL-MME, ELECTRONICS DIV FORT MONMOUTH, NJ 07703

PROJECT MANAGER, FIREFINDER DRCPM-FF FT. MONMOUTH, NJ 07703

PROJECT MANAGER, LANCE DRCPM-LC REDSTONE ARSENAL, AL 35809

PROJECT MANAGER PATRIOT MISSILE SYSTEM, USADARCOM DRCPM-MD-T-E REDSTONE ARSENAL, AL 35809

PROJECT OFFICER US ARMY ELECTRONICS RES & DEV COMM FORT MONMOUTH, NJ 07703

COMMANDER

US ARMY MISSILE COMMAND ATTN DRCPM-DT, TOW-DRAGON PROJ OFFICE ATTN DRDMI-TB, REDSTONE SCIENTIFIC INFO CENTER ATTN DRDMI-E, ENGINEERING LABORATORY ATTN DROMI-ET, TEST & EVALUATION DIR REDSTONE ARSENAL, AL 35809

DIRECTOR NIGHT VISION & ELECTRO-OPTICS LABORATORY ATTN DELNV-EO, E-O DEVICES DIV FORT BELVOIR, VA 22060

COMMANDER

US ARMY NUCLEAR & CHEMICAL AGENCY ATTN ATCN-W, WEAPONS EFFECTS DIV 7500 BACKLICK RD **BUILDING 2073** SPRINGFIELD, VA 22150

COMMANDER
US ARMY OPERATIONAL TEST
AND EVALUATION AGENCY
ATTN CSTE-ZS, SCI ADVISOR
ATTN CSTE-TM-EWI, ELECTRONIC
WARFARE & INTELLIGENCE SYS
ATTN CSTE-FTD, FIELD TEST DIV
5600 COLUMBIA PIKE
FALLS CHURCH, VA 22041

DIRECTOR
US ARMY RESEARCH & TECHNOLOGY LABS
AMES RESEARCH CENTER
MOFFETT FIELD, CA 94035

ARMY RESEARCH OFFICE (DURHAM)
ATTN TECH LIBRARY
P.O. BOX 12211
RESEARCH TRIANGLE PARK, NC 27709

DIRECTOR
US ARMY SIGNALS WARFARE LABORATORY
ATTN DELSW-TE, TEST & EVAL OFFICE
ATTN DELSW-CE, COMM/EW DIV
VINT HILL FARMS STATION
WARRENTON, VA 22186

COMMANDER
US ARMY TANK-AUTOMOTIVE RES
& DEV COMMAND
DEPT OF THE ARMY
ATTN DRDTA-T, DIR FOR ENGR SUPPORT
WARREN, MI 48090

COMMANDER
HQ, US ARMY TEST & EVALUATION COMMAND
ATTN DRSTE-AD-M, METHODOLOGY
IMPROVEMENT DIV
ABERDEEN PROVING GRROUND, MD 21005

COMMANDER
WHITE SANDS MISSILE RANGE
DEPT OF THE ARMY
ATTN STEWS-CE, COMMUNICATIONS/
ELEC OFFICE
ATTN STEWS-NR, NATIONAL RANGE
OPERATIONS DIR
ATTN STEWS-ID, INSTRUMENTATION DIR
ATTN STEWS-ID-E, ELECTRONICS DIV
WHITE SANDS MISSILE RANGE, NM 88002

COMMANDER
US ARMY ABERDEEN PROVING GROUND
ATTN STEAP-MTM, METHODOLOGY & INST
ABERDEEN PROVING GROUND, MD 21005

COMMANDER
US ARMY ZLECTRONICS PROVING GROUND
ATTN STEEP-MT-I, METHOD & INSTR BR
ATTN STEEP-MT-T, TECH TEST SUPPORT
ATTN STEEP-PA-I, TECH INFO CENTER
FORT HUACHUCA, AZ 85613

COMMANDER
US ARMY YUMA PROVING GROUND
ATTN STEYP-MTE, TEST ENGINEERING DIV
YUMA, AZ 85364

COMMANDER
US ARMY ENGINEER SCHOOL
ATTN TECH LIB
FORT BELVOIR, VA 22060

COMMANDANT
US ARMY SOUTHEASTERN SIGNAL SCHOOL
ATTN TECH LIB
FORT GORDON, GA 30905

ASSISTANT SECRETARY OF THE NAVY RESEARCH, ENGINEERING, & SYSTEMS DEPT OF THE NAVY WASHINGTON, DC 20350

CHIEF OF NAVAL MATERIAL DEPT OF THE NAVY ATTN NSP-205, ASST FOR FBM WPN SYS, OPS & EVAL

CHIEF OF NAVAL OPERATIONS
DEPT OF THE NAVY
ATTN DIR, COM & CONTR &
COMMUNICATIONS PROGRAMS
WASHINGTON, DC 20350

CHIEF OF NAVAL RESEARCH DEPT OF THE NAVY ATTN TECHNICAL LIBRARY ARLINGTON, VA 22217

COMMANDER
NAVAL AIR SYSTEMS COMMAND HQ
DEPT OF THE NAVY
ATTN ASST CMDR FOR RES & TECH
ATTN ASST CMDR FOR TEST & EVAL
WASHINGTON, DC 20361

COMMANDER
NAVAL OCEAN SYSTEMS CENTER
ATTN RESEARCH & TECH OFFICE
SAN DIEGO, CA 92152

COMMANDER
NAVAL ORDNANCE STATION
INDIANHEAD, MD 20640

SUPERINTENDANT
NAVAL POSTGRADUATE SCHOOL
ATTN LIBRARY, CODE 2124
MONTEREY, CA 93940

DIRECTOR
NAVAL RESEARCH LABORATORY
ATTN 5000, ELECTRONIC SCI & TECH DIR
ATTN 5200, ELECTRONICS TECH DIV
ATTN 5500, OPTICAL SCI DIV
WASHINGTON, DC 20375

COMMANDER
NAVAL SEA SYSTEMS COMMAND HQ
DEPT OF THE NAVY
ATTN NSEA-09G32, TECH LIB
ATTN NSEA-03, RES & TECHNOLOGY DIR
WASHINGTON, DC 20362

COMMANDER
NAVAL SHIP R&D CENTER
ATTN INSTRUMENTATION DEV
BETHESDA, MD 20034

COMMANDER
NAVAL SURFACE WEAPONS CENTER
ATTN WA-31, SENSOR ELECTRONICS BR
ATTN WA-50, NUCLEAR WEAPONS EFFECTS DIV
ATTN WR, RESEARCH & TECHNOLOGY DEPT
ATTN WR-42, ELECTRO-OPTICS BR
WHITE OAK, MD 20910

COMMANDER
NAVAL TELECOMMUNICATIONS COMMAND HQ
ATTN TECHNICAL LIBRARY
4401 MASS AVE NW
WASHINGTON, DC 20390

COMMANDER
NAVAL UNDERWATER SYSTEMS CENTER
ATTN WEAPON SYS DEPT
NEW LONDON, CT 06320

COMMANDER
NAVAL WEAPONS CENTER
ATTN 315, LASER/INFRARED SYS DIV
ATTN 394, ELECTRO-OPTICS DIV
ATTN 06, TEST & EVALUATION DIV
CHINA LAKE, CA 93555

COMMANDER OFFICER
NAVAL WEAPONS EVALUATION FACILITY
KIRTLAND AIR FORCE BASE
ATTN TECH LIBRARY
ALBUQUERQUE, NM 87117

COMMANDER HQ AERONAUTICAL SYSTEMS DIV (AFSC) WRIGHT-PATTERSON AFB, OH 45433

COMMANDER
ARNOLD ENGINEERING DEVELOPMENT CENTER
ATTN DY, DIR TECHNOLOGY
ATTN DYR, R&D DIV
ATTN XO, DIR TEST
ARNOLD AIR FORCE STATION, TN 37389

DIRECTOR
AF AVIONICS LABORATORY
ATTN KJ (TE), ELECTRONIC TECH DIV
ATTN KJA (TEO), ELECTRO-OPTICS TECHNOLOGY BR
WRIGHT-PATTERSON AFB, OH 45433

COMMANDER
AF ELECTRONIC SYSTEMS DIVISION
ATTN WO, DEP FOR CONTROL
& COMMUNICATIONS SYS
L. G. HANSCOM AFB, MA 01730

COMMANDER
HQ FOREIGN TECHNOLOGY DIVISION (AFSC)
ATTN YEG (ETW), ELECTRONIC WARFARE DIV
WRIGHT-PATTERSON AFB, OH 45433

COMMANDER
SPACE & MISSILE SYSTEMS ORGANIZATION
(SAMSO)
PO BOX 92960
WORLDWAY POSTAL CENTER
ATTN XR, DEP FOR DEV PLANS
LOS ANGELES, CA 90009

COMMANDER
HQ AIR FORCE SYSTEMS COMMAND
ATTN DL, DIR, SCI & TECHNOLOGY
ATTN TECHNICAL LIBRARY
ANDREWS AFB
WASHINGTON, DC 02334

COMMANDER
HQ AF TEST & EVALUATION CENTER
ATTN TEK, ELECTRONICS DIV
KIRTLAND AFB, NM 87115

COMMANDER
AFWL/DYC
ATTN EL, ELECTRONICS DIV
ATTN COL GERALD P. CHAPMAN
KIRTLAND AFB, NM 87117

AMES RESEARCH CENTER
NASA
ATTN TECHNICAL INFO DIV
MOFFETT FIELD, CA 94035

DIRECTOR
NASA
GODDARD SPACE FLIGHT CENTER
ATTN 250, TECH INFO DIV
GREENBELT, MD 20771

JET PROPULSION LABORATORY
CALIFORNIA INSTITUTE OF TECHNOLOGY
ATTN TECHNICAL LIBRARY
4800 OAK GROVE DRIVE
PASADENA, CA 91103

DIRECTOR
NASA
LANGLEY RESEARCH CENTER
ATTN -TECHNICAL LIBRARY
HAMPTON, VA 23665

DIRECTOR
NASA
LEWIS RESEARCH CENTER
ATTN TECHNICAL LIBRARY
CLEVELAND, OH 44135

G. E. SPACE DIVISION P.O. BOX 8555 ATTN DANTE TASCA ROOM 2432, BLDG 100 PHILADELPHIA, PA 19101

DEUTSCH ELECTRONIC COMPONENTS ATTN HARRY SPRY MUNICIPAL AIRPORT BANNING, CA 92220

IRT CORPORATION
P.O. BOX 81087
ATTN T. BUCKMAN
SAN DIEGO, CA 92138

GENERAL ELECTRIC CO.-TEMPO 816 STATE STREET (PO DRAWER QQ) ATTN DASIAC SANTA BARBARA, CA 93102

THE BOEING COMPANY PO BOX 3707 ATTN V. JONES (MS 86-76) SEATTLE, WA 98124

CATHOLIC UNIVERSITY OF AMERICA CARDINAL STATION P.O. BOX 232 ATTN J. CLARK WASHINGTON, DC 20017

TRW DEFENSE & SPACE SYSTEMS GROUP ONE SPACE PARK ATTN 82/2389, G. ARMSTRONG, R. EASTMAN ATTN M2/2384, J. TAMBE, ATTN M1/1338 ATTN M1/1334, P. GOLDSMITH ATTN M2/2145, S. KIMBLE REDONDO BEACH, CA 90278

HUGHES RESEARCH LABS
DIV OF HUGHES AIRCRAFT COMPANY
ATTN R. BLAIR
MALIBU CANYON ROAD
MALIBU, CA 90265

EFFECTS TECHNOLOGY INC.
ATTN W. NEAUMAN
ATTN R. WENGLER
ATTN E. BICK
5383 HOLLISTER AVE
SANTA BARBARA, CA 93111

EG&G, INC. ATTN R. LYNN ATTN M. NELSON ATTN T. DAVIES 130 ROBIN HILL ROAD GOLETA, CA 93017

GENERAL DYNAMICS CORPORATION ATTN K. WILSON PO BOX 80986 SAN DIEGO, CA 92138

GALILEO ELECTRO-OPTICS CORPORATION ATTN R. JAEGER ATTN L. OWEN CALILEO PARK STURBRIDGE, MA 01518

ITT ELECTRO-OPTICAL PRODUCTS DIVISION ATTN M. MAKLAD ATTN L. HUYBRECHTS ATTN A. ASAM ATTN G. WILHELMI 7635 PLANTATION ROAD ROANOKE, VA 24019

PHYSICS INTERNATIONAL COMPANY ATTN F. SAUER ATTN C. GODFREY ATTN R. GENUARIO ATTN J. DEMPSEY 2700 MERCED STREET SAN LEANDRO, CA 94577

LOCKHEED MISSILES AND SPACE COMPANY, INC. ATTN H. POLISKY WWPC BOX 92915 LOS ANGELES, CA 90009

ROCKWELL INTERNATIONAL CORPORATION ATTN G. MESSENGER ATTN D. STILL PO BOX 3105 ANAHEIM, CA 92803

SCIENCE APPLICATIONS, INC. ATTN K. SITES PO BOX 19057 LAS VEGAS, NV 89119

SCIENCE APPLICATIONS, INC. ATTN P. MILLER 1257 TASMAN DRIVE SUNNYVALE, CA 94086

SPECTRONICS ATTN L. STEWART ATTN MR. SHAUNFIELD 830 EAST ARAPAHO RICHARDSON, TX 75081

SRI INTERNATIONAL ATTN D. KEOUGH ATTN G. ABRAHAMSON 333 RAVENSWOOD AVENUE MENLO PARK, CA 94025

TIMES WIRE AND CABLE ATTN W. PRIMROSE 358 HALL AVE WALLINGFORD, CT 06492

US ARMY ELECTRONICS RESEARCH & DEVELOPMENT COMMAND ATTN TECHNICAL DIRECTOR, DRDEL-CT ATTN HARMAN, R., DRDEL-MA

HARRY DIAMOND LABORATORIES ATTN CO/TD/TSO/DIVISION DIRECTORS ATTN RECORD COPY 81200 ATTN HDL LIBRARY (3 COPIES) 81100 ATTN HDL LIBRARY, (WOODBRIDGE) 81100 ATTN TECHNICAL REPORTS BRANCH, 81300 ATTN CHAIRMAN, EDITORIAL COMMITTEE ATTN CHIEF, 21000 ATTN CHIEF, 21100 ATTN CHIEF, 21200 ATTN CHIEF, 21300 ATTN CHIEF, 21400 ATTN CHIEF, 21500 ATTN CHIEF, 22000 ATTN CHIEF, 22100 ATTN CHIEF, 22300 ATTN CHIEF, 22800 ATTN CHIEF, 22900 ATTN DICKINSON, P., BETA-PD ATTN MILETTA, J., 21100 ATTN LANHAM, C. E., 00210 (2 COPIES) ATTN LAMB, R., 22900 ATTN WHITTAKER, D., 22900 ATTN DOCTOR, N., 34500 ATTN ROSE, T., 21100 ATTN FAZI, C., 21100 ATTN GOODMAN, R., 34400 ATTN BOYKIN, C., 22800 ATTN SHARE, S., 22800 ATTN BOESCH, H. E., 22800 ATTN WIMENITZ, F., 20240 ATTN BLACKBURN, J., 22300 (30 COPIES)

- 4

